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This paper presents expressions for the harmonic components of the near-field 
acoustic pressure of a B-bladed unswept single-rotation propeller. These are derived 
using asymptotic approximations to the standard radiation integrals for steady 
loading and thickness noise, under the assumption that B is large. The dependence 
of the pressure on blade operating conditions (both supersonic and subsonic) is 
described by simple formulae, which provide significant insights into the mechanisms 
of sound generation by rotating bodies. For supersonic motion, the importance of 
sources satisfying the Ffowcs Williams & Hawkings sonic condition is demonstrated, 
whilst for subsonic blades the near-field noise is proved to be tip-dominated. 
Expressions for the noise (valid from close to the tips right out to infinity) are given 
in both cases, requiring matching across an Airy function smoothing region when the 
tips move subsonically. Excellent agreement between the asymptotic formulae and 
both full numerical evaluations (with a considerable saving in CPU time) and 
experimental data is achieved. 

1. Introduction 
Since the realization that certain advanced ultra-high-bypass ratio engines (e.g. 
' propfans ' and ducted fans) represent a potentially significant fuel saving over the 
more conventional jet engines currently powering civilian airoraft, there has been 
intense interest in the aerodynamics and aeroacoustics of high-speed propellers. The 
most pressing noise issues include the questions of whether such aircraft would meet 
tight environmental noise certification requirements, and also match current 
expectations of cabin levels. Therefore, given the vast development and testing costs 
involved, it is acutely necessary to develop accurate theoretical prediction schemes, 
and great progress has been made in this direction, both in the frequency domain 
(Hanson 1980, 1983) and the time domain (Farassat 1981). 

Most of the existing analysis is based on an integral formula for the acoustic 
pressure (due to Ffowcs Williams & Hawkings 1969), which reduces the problem to 
one of determining the sound field generated by a surface distribution of sources 
associated with thickness and steady loading effects (calculation of the latter being 
effected using steady aerodynamic codes), and a volume distribution of nonlinear 
quadrupoles. Evaluation of the resulting frequency-domain radiation integrals 
numerically, at  least in the near field, and for the higher harmonics of greater 
subjective importance, is exceedingly expensive in CPU time, owing to the presence 
of a rapidly oscillating Bessel function representing the radial acoustic efficiency. 
More importantly, no matter how rapidly such numerical evaluations can be 
performed, they cannot yield any information on the underlying physics or scaling 
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laws. However, great simplification is possible when the blade number B is assumed 
large, and has been used by Parry & Crighton (1989), who performed an asymptotic 
analysis as B+ 00, and developed expressions for the far-field thickness and steady 
loading noise. Close agreement with more exact (and time-consuming) methods was 
found for B as small as 4, and even more so for modern values of 7 or 8, and the 
scheme is now in day-to-day use at  Rolls-Royce plc. As well as being useful for 
prediction, the scheme provides the basis for control, because it leads to the 
identification of the location of the dominant noise sources and can be used to 
produce simple scaling laws useful in design considerations. 

Parry & Crighton’s analysis was, however, performed under the assumption that 
the observer-hub separation, R,, was large, and it therefore considerably under- 
estimates near-field levels, so important for considerations of passenger comfort 
and structural integrity. I n  this paper, the authors describe how the asymptotic 
approximation can be employed in the near field, and will in fact derive formulae 
which are uniformly valid in observer position, a t  least close to  the propeller disk 
plane, and which therefore include the far-field results as a special case. 

In  $2 a brief outline is given of the derivation of the steady loading and thickness 
radiation integrals, in observer-fixed coordinates, and of their manipulation into a 
form suitable for asymptotic analysis. It should be noted that these formulae rely on 
the ‘thin-blade approximation’, as used by Hanson (1980) (i.e. the thickness and 
steady loading noise sources are moved from the genuine blade surface onto the mid- 
chord). The limitations of this method are discussed in Peake & Crighton (1990, 
1991 b)  ; essentially, the assumption of vanishingly small blade thickness can be 
employed in estimating the amplitude of the lower harmonics of blade passing 
frequency, but is unreliable for predicting the highest harmonics, where the Doppler- 
contracted wavelength is comparable with the blade thickness. It is therefore 
envisaged that the formulae described in this paper will be of particular practical use 
in calculation of the sound pressure level and of tones with moderate harmonic 
number ; the more complicated expressions given in Peake & Crighton (1991 b)  must 
be used if accurate predictions of the real-time wave form (involving the calculation 
of a large number of harmonics to resolve the impulsive pressure peaks) are required. 
The subsequent asymptotic approximations for supersonic and subsonic blades are 
described in $93 and 4 respectively; for a supersonic blade, the Ffowcs Williams & 
Hawkings sonic, or ‘Mach’, condition is confirmed, whilst in the subsonic case, the 
field away from the blades is seen to possess an Airy smoothing region (analogous to 
a caustic in ray theory), which separates regions of near-field and far-field behaviour. 
A further refinement to the supersonic expansion is described in $ 5 .  In  this paper the 
quadrupole terms (assumed small a t  moderate forward speeds and for thin blades) 
will be ignored ; the reader is referred to Peake & Crighton (1991 a )  for a discussion 
of asymptotic theory applied to the quadrupoles. 

Good agreement is obtained with both numerical methods and experiment, both 
in terms of trends with varying design parameters, and of absolute level predictions. 
A detailed comparison of various near-field corrections with test data is presented by 
Boyd & Peake (1990). The large-blade-number approximation is again seen to 
provide important physical insight, over and above the full numerical solution, 
although it  should be again stressed that it is a consistent and accurate prediction 
scheme in its own right. 
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2. Derivation of radiation integrals 
In this section a derivation will be presented of the radiation integral for the steady 

loading noise of a B-bladed single-rotation propeller. This result has been previously 
stated by a number of authors, notably Garrick & Watkins (1954), and in a different 
form by Hanson (1983), but the procedure used here parallels most closely the work 
of Parry & Crighton (1986), whose far-field formulation will be generalized. 

The starting point is an expression for the acoustic pressure p at observer position 
(2, y, z )  in a medium at rest with density po and sound speed c,, due to a point force 
F, whose position in reception coordinates is (xl, yl, z l ) ,  

47t 

where S = {(2-x1)2+p2[(y- y1)2+ (z-z1)2]}+, (2) 

M,(x-x1)+S 

P2 
C T =  (3) 

is the retarded-time observer-source separation, ,8 = (1 -W,): and M ,  is the axial 
(flight) Mach number. 

The reception polar coordinates (R,, 0,) are made clear in figure l ( a ) ,  and the 
blade cross-section in figure 1 ( b ) .  The observer and blade-element coordinates, 
relative to the hub, are 

(4) (xl, yl, zl) = ( - c x  cos a,  r cos (# + $), r sin (# + $)), 

where q5 is the azimuthal angle and the blade section has been taken as vanishingly 
thin. Following Parry & Crighton (1986), the force due to all the B blade elements at  
radial station ‘r and chordwise station X is expressed in the form 

I (x, y, z )  = (R, cos 0,,R, sin O,, 0 ) ,  

m 

m--a 

x (sin a,  - cos a sin (# + $), cos a cos (# + $)) dXdr, (5) 
with U, the helical velocity, F(X) a normalized shape function defining the chordwise 
blade loading, and where $ is related to the chordwise non-compactness and angle 
of twist a bv 

d cx 
@ = -  sin a. 

r 

The local section lift coefficient is cL, the local chord c, and X runs from -t a t  the 
leading edge of a section to +$ at the trailing edge. Substituting (5) into ( l ) ,  
integrating over all blade elements and making the simple transformation # + q5 - $ 
yields an integral expression for Pm, the mth harmonic of the steady loading noise, 

(x-xl)sina (y-yl)cosasin# (z--zl)cosacos# ecc - S + S }+P(X) dX d# dr, 

where a tilde denotes normalization with respect to blade length, D is the propeller 
diameter, and rh is the radius of the hub and Mt and M ,  are respectively the tip 

SP 
(7) 
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FIGURE 1. (a)  Definition of the observer reception and emission coordinates, and the axial and tip 
Mach numbers. The observer is positioned in the horizontal (x, y)-plane. ( b )  The blade cross-section. 

rotational and helical Mach numbers. I n  deriving (7) a term in S-3, arising from 
differentiation of S-' in (l), has been neglected as being O(mB)-' smaller than the 
others, and therefore insignificant at distances from the tip of practical interest (at  
least for the relatively large modern values of B).  It is again emphasized that, as a 
result of our thin-blade approximation, (7) will only be valid for moderate values of 
m (and will therefore be perfectly adequate for calculating the sound pressure level 
of a subsonic propeller) ; for the higher harmonics required to evaluate the fine details 
of the time-domain wave form, radiation integrals taking full account of blade 
thickness are needed, derivation of which is described by Peake & Crighton (1990, 
1991 b ) .  

In  order to suppress the effect of chordwise non-compactness, one sets c = 0 in the 
exponential of (7),  equivalent to taking the leading term in a small-c expansion (valid 
only for the moderate values of harmonic number m employed in this paper), and 
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since F integrates to unity, the radiation integral reduces to a double integral over 
the propeller disk plane (now with normalized radial station z, and zo the value of z 
at the hub), 

iQmB2copo l o J r e c c L e x p  (imB[#+Qt-M,d]) 
167c2 pm 

a 2, cos 8, sin a 2, sin 8, cos a sin # - 
8/32 x" + 

which is Garrick & Watkins' (1954) result for the sound due to a regular B-element 
fan of concentrated line sources. Crighton & Parry (1991 a) describe a method for 
including finite chord length in the asymptotic scheme, but for simplicity the 
concentration distribution will be adopted in the rest of this paper. Equation (8) can 
be manipulated into a form amenable to asymptotic analysis by noting that the 
second term is easily related to the derivative of the first with respect to ~ , c o s 8 ,  
(denoted 2), at  least to  leading order in mB, and the #-integral in the third term can 
be integrated by parts, to give a term very similar to the first, again to  leading order 
in mB. Equation (8) then reduces to 

with I ( 1 )  and I ( 2 )  defined by 

"M,W sin a 
ccLexp (imB[#+Qt-M,d]) d#dz, 

The asymptotic expansions of I ( 1 )  and I ( 2 )  are very similar, so the problem has 
essentially been reduced to that of approximating just one integral. It should be 
noted that only the m > 0 components need be calculated; those for m < 0 can be 
found simply by complex conjugation. For definiteness, it  will be assumed in the rest 
of this paper that  a = tan-'(zM,/M,). In  practice, of course, each airfoil will be 
aligned a t  a small (non-zero) angle of attack, thereby generating lift. However, since, 
as will be demonstrated later, the noise generation will be dominated by a single 
radial station, the error involved in using our choice of a will be small; in any event, 
any given twist distribution can easily be included in our final asymptotic formulae. 

An expression for the thickness noise can be obtained in a similar manner, starting 
from the pressure due to a point mass source m(t) (see Lighthill 1962) 

which yields the radiation integral, again for chordwise compact sources, 



290 N .  Peake and D .  G .  Crighton 

where the blade is assumed symmetric, with maximum local thickness 2h(r) .  In what 
follows, attention will be restricted to the steady loading noise, although of course 
the thickness noise analysis proceeds in exactly the same way. 

3. Asymptotic analysis : a supersonic propeller 
An asymptotic expansion of the radiation integrals of $2 will now be sought in 

terms of suitably rapidly decreasing functions of B ,  in the limit B +  CO. For 
simplicity, consider the integral 

I 
where 

which is closely related to I(1), I ( z )  and I ( 3 ) .  To make an asymptotic approximation 
we must seek stationary points of the argument of the exponential, i.e. points 
( z * , $ * )  such that 

s” = {i?: cosz 0, +pz[i?: sin2 0, + 2 2 -  2&, sin 0, cos $I};, (14) 

Vf = 0. (15) 

The analysis falls into two quite distinct cases, depending on whether stationary 
points exist within the range of integration or not. When they are present, standard 
stationary phase theory predicts that  I will be dominated by contributions from the 
particular azimuthal positions ( z * ,$ * ) ,  in which case the noise is supersonic in 
character (cf. Crighton & Parry 1 9 9 1 ~ ) .  If no stationary point exists, or equivalently 
the roots z* are all greater than unity, it will be shown that the noise is tip- 
dominated, and essentially subsonic in character. The two cases will be considered 
separately ; in this section the leading-order term in the asymptotic expansion is only 
calculated when a single stationary point is present, and in $5 a second-order 
modification is given. The subsonic case will be treated in $4. 

Suppose first, then, that I does possess stationary phase points within its range of 
integration, and so (15) reduces to the two equations 

z* = i?, sin 0, cos $* (16) 

and 
MtEo sin 0, z* sin $* 

s” 1 =  , 

which are most readily interpreted by transformation to emission coordinates, via 

17, sin 0, sin $ s“ = Z(I -M, cos 61, sin 6 = 
Z , 

where 6 is the angle between the source-observer vector and the direction offorward 
flight, a t  emission time, and is therefore a function of z and $. One can then easily 
form the identity 

which means that the velocity component of the dominant sources in the direction 
of the observer is exactly sonic, in agreement with the Ffowcs Williams & Hawkings 
(1969) theory. This is shown in figure 2. 

Mtz,sin6+M,cos6 = 1, (19) 
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Observer 
FIQURE 2. The dominant source of noise for a supersonic propeller, located a t  the Mach radius, 

and with an exactly sonic velocity component in the observer direction. 

Equations (16) and (17) have been solved exactly, to give 

= + - (~+M~R~sin4Qo-2/32M,2&sin2 Q , - ~ ~ ~ ~ o s ~ Q ~ ) f + ~ ~ + ~ 8 ~ s i n ~ O ,  

w 9 

(20) 
and $* is then recovered from (16). These roots are only admissible as stationary 
points of equation (13) provided that both the conditions lcos $*I < 1 and zo < z* < 1 
are satisfied, and for different observer positions there will be two, one or no 
stationary points within the range of integration. An explicit expression for the 
leading term in the asymptotic expansion of I then follows from standard stationary 
phase analysis of two-dimensional integrals (see Jones 1982), and involves calculation 
of the Hessian matrix off, given by the formula 

For simplicity, it will now be assumed that COSQ, is small, corresponding to an 
observer positioned close to the propeller plane (in the region of highest acoustic 
pressure), and that the observer is outboard of the blade tips. In this case it turns out 
that just one of the roots in (20) (the smaller one) is admissible, and the circle 
z = z* is termed the Mach radius; note that z* is a function of 8,. Then, to leading 
order in cosQo, the stationary point becomes 

(22) 
cos$* = - + O  ( C O S ~  Qo), 

Mt R O  

J z* = -+o(cos2Qo) .  P 
Mt 
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In other words, for an observer positioned close to the plane of the propeller, the 
noise will be dominated by the Mach radius, provided that PIM, < 1,  which will be 
taken to be the condition that the noise is supersonic in  character (at least for an 
observer close to  the disk plane). Proceeding with the stationary phase calculation 
then yields, correct to 0 (cos @,), and for m > 0, 

Substitution back into (9), with the observation that I(1) - -I('),  gives a final value 
for the steady loading noise, to leading order in B-' and C O S ~ , ,  of 

M~ M ,  A, cos o, +#*-(-- q R; 1)); (24) 

P' P2 
where the quantities c and cL are evaluated at the Mach radius and the superfix (1) 
denotes the first term in the asymptotic expansion. This expression retains full 
dependence on all the important design parameters, and is clearly very much easier 
to compute than the original integrals in (10) (this is true even for arbitrary observer 
angle, a more complicated formula for which would follow in exactly the same way). 

Equation (24) was derived on the assumption that go is of order unity (this was 
implicit in our stationary phase analysis). However, if the limit R, + 00 is now taken, 
Parry & Crighton's (1989) far-field result is regained, and it is therefore seen that (24) 
is uniformly valid for any observer-hub separation, containing the far field as a 
special case. This should be of great advantage in prediction work. 

Finally, it should be noted that the Fourier series defined by (24) does not 
converge, and only exists in the generalized sense. The corresponding time-domain 
result can be regained by use of Lighthill's (1958) theory of Fourier transforms, from 
which it can be seen that the pressure field contains a series of delta functions, which 
is exactly what one would expect, given that the chordwise loading distribution has 
here been treated as a delta function. A method to smooth out this singularity for 
more diffuse loading has been described by Crighton & Parry (1991 a) .  

4. Asymptotic analysis : a subsonic propeller 
When the propeller is rotating subsonically, so that no point along its length can 

have a sonic velocity component in the observer direction (or equivalently z*, the 
root of (16) and (17), is greater than unity) a different approach must be adopted. 

The identity (Erdelyi et al. 1954), representing the free-space Green's function for 
the Helmholtz equation as a Fourier integral, 

with -7c < arg (b'-x2)f < 0 ;  a > 0, will be used together with the Bessel function 
addition theorem (Gradshteyn & Ryzhik 1980) 

H~'[c(z' - 222, sin 0, cos # +& sin' @,):I = C Jn(cz) HF) (el?,, sin 0,) exp (in#), 
00 

n=--m 

(26) 
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assuming that Bo sin 8, > z (so that only the sound directly ahead of the propeller is 
thereby excluded from consideration). 

Then I can be rewritten in the form 

imBka, cos 8.3 dk dz, (27) 
P 

Mt Bo sin 8, 

P 
where k is a helical wavenumber along the propeller advance path. One would now 
proceed by splitting up the z and k integration ranges into separate regions, such that 
a single asymptotic expression for the special functions pertains in each region, and 
then evaluating each term separately. This approach could of course have been used 
in $3, but it was felt more natural to use the stationary phase analysis where possible, 
especially since the stationary point has such an obvious physical interpretation. 

In order to fix ideas, it is helpful to consider the special case cos 8, = 0. Under this 
simplifying assumption it can be shown that the dominant contribution to I comes 
from the neighbourhood of z = 1 (by integration of the z-integral once by parts) and 
from the neighbourhood of k = 0 (owing to the presence of a saddle point at  the k- 
origin). When the assumption of 8, = #c is dropped, one can show that the z-integral 
is still dominated by the endpoint z = 1, but that the saddle point has been displaced 
off the real line, and the k-contour must be deformed accordingly. Calculation of this 
saddle point can in general only be done numerically so, as previously, the 
calculation will be restricted to determination of the leading-order term in cos 8,. 

Thus, following the procedure outlined above, it can be shown, after some effort, 
that the dominant contribution to I comes from the term 

imBMt lor-d J,, [".? (1 - k2$] I -  - 
PZ -l+d 

x HEL m B 3  (1 - k2)i exp imBkR, cos @,$) dk dz, (28) 
[ M :  I (  

where 6 is some small positive parameter, and the next term in the expansion is 
O(mB)-' smaller than the first. 

The evaluation of (28) is accomplished by use of the large-argument-large-order 
expansion (Abramowitz & Stegun 1968) 

where y is defined by sechy =-(1-k2)t, Mt z 
P 

and of course Mt/P < 1 for a subsonic propeller. 
The z-integral can then be integrated once by parts (so that the leading-order term 

comes from the neighbourhood of z = i) ,  demonstrating that subsonic propeller noise 
is, throughout, the near field and the far field, tip-dominated, to give 

x exp(mB(tanhy,-y,))exp (imBkl?,cos8, Mt//P)dk, (31) 

where yt is just y evaluated at the tip. Terms in cos2O0 have been neglected. 



294 N .  Peake and D .  G .  Crighton 

The subseguent evaluation of Z falls into three main categories, depending on the 

( a )  I?, is strictly greater than P/Mt ; 
( b )  eo is strictly less than P/Mt ; 
(c) R, lies within a band of width (mB)-i around P/Mt.  
Region (c) is a smoothing region between region ( a )  (which extends outwards from 

the Mach radius to  infinity) and ( b )  (which extends inwards to close to the tips); it  
will be shown that in fact (c) exhibits an Airy function dependence analogous to that 
found across a focus in ray theory. In  each of the above regions the Hankel function 
in (31) has a different asymptotic form, and these match together smoothly as the 
observer makes a radial traverse, but must be considered separately, as follows. 

(a)  When the observer is outside the Mach radius, the asymptotic approximation 

value of Mt R,/$, as follows : 

where (33) 

is substituted into (31), and it is then seen that the saddle point satisfies Fi(k,)  = 0, 
where 

iMt I?, cos 0, 

P' 
Fl(k)  = tanhy,-y,-itana+ (34) 

This could be solved numerically for any 0,, but a strictly algebraic solution only 
proves possible to a given order in C O S ~ , ,  so that 

Go cos 0, 
k, = (tanh yo + i tan a,) + 0 ( cos2 @,), M t ( 8 i -  1) (35) 

the suffix 0 denoting evaluation a t  k = 0. Standard saddle point theory then provides 
the leading term of Z (here for m > 0), namely 

1 
(tanh yo): (tan a,); (tan a, + i tanh yo); 

iMt k, 8, cos 0, 
P' 

tanh yo- yo + ia, - i tan a, + 

Derivation of the pressure field is completed by substitution back into (9), noting 
that 

and (38) 

iQ2t + tanh yo-yo + ia,- i tana,- iMtMx 
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The m < 0 components are obtained from their positive counterparts by complex 
conjugation. Again, this expression represents a great simplification over the 
radiation integral (even if one had to calculate k, numerically), but still retains full 
dependence on the important design parameters. The harmonics decay exponentially 
rapidly, consistent with the absence of a stationary point, and, just as in the 
supersonic case, the formula is uniformly valid, from just outside the Mach radius, 
right out to infinity. 

It should be noted that (39) has an x-f singularity as the observer approaches the 
Mach radius. However, the authors stress that this is not a real singularity of the 
pressure field, and is smoothed out by consideration of an observer position 
sufficiently close to the Mach radius, as in subsection (c). 

Finally, i t  has been assumed that the loading is non-zero towards the tip, so that 
the cL in (39) is simply evaluated at  z = 1. A simple modification to include the more 
realistic effect of (typically parabolic) decay in loading has been described by Parry 
& Crighton (1989). Essentially, if it is supposed that the lift coefficient takes the form 
c,(l-z)” as z+ 1, then an additional factor 

V !  

(mB tanh yo)” 

is introduced in (39) (and similarly in (45), (50),  (51) and (52)). 

approximation 
(b) When the observer is inside the Mach radius, one must use the different 

where 

i exp (&(a - tanh a)) 
($r& tanh a); 

HEL (mB sech a) - , 

The saddle point again satisfies an equation of the form Fi(k,)  = 0, where 

iMt kRo cos 8, 
B” F2(k) = a- tanh a+ tanh y, - y, + 7 

and to leading order is 

so cos 8, 
Mt(R;-l) 

k = -  (tanh yo + tanh a,) + O(cos2 8,). 

(43) 

(44) 

Hence, using (31), (38) and (9), an explicit expression for the leading term of the 
pressure can be found to be 

iS2t + tanh yo -yo + a, - tanh a, - iM, M ,  

Again, this expression is singular like x-f as Mtl?,/,8 approaches unity from below, 
and is smoothed out by the theory described in subsection (c). As one would expect, 
p becomes infinite as the tip, l?, = 1, is approached. 
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(c) Consideration must now be given as to how to match the outer and inner 
solutions found in (a)  and ( b )  respectively. Suppose that the observer lies within 
O(rnB)-i of the Mach radius, and write 

where y is an O( 1) parameter ; then the appropriate Hankel function expansion is 

[Ai ( - 2 4 ~ )  + iBi ( - 2;y)]. 
2t 

(?nB)t 
HE’,(&( 1 + y(mB)-g)) - - (47) 

In other words, HE’, contains no exponential dependence on mB in this region, so 
that the saddle point of the exponential in (31) now satisfies Fj(k , )  = 0, where F3 is 
simply defined by 

F,(k) = tanh yt - yt + 2 R,  cos 0,. (48) 
i M k -  

P2 
This is solved to  leading order as 

iMtao cos 0, 
Ptanhyo 

k, = + 0 (cos2 0,), (49) 

and thus the pressure in the vicinity of the Airy smoothing region is found to be 

x exp (mB[iQt + tanh yo -yo  - iMtM,ao cos 0,/p”]). (50) 

This is the solution required to provide a matching between ( a )  and ( b )  in the sense 
of matched asymptotic expansion theory. The first term in the outer expansion of 
(50) (in this case with cos 0, = 0 for simplicity) is found to be 

when R, > /3/Mt, and 

xexp ( rnB [ iQt+- :( l-- Mp):+tanhyo-yo]) (52) 

when 2, < P/Mt.  It can easily be verified that these are equal to the first terms in the 
inner expansions of (39) and (45) respectively. Composite expansions can now be 
formed, which retain the accuracy of the individual expansions, but which provide 
a single expression valid in both inner and outer regions. Inside the Mach radius the 
composite is formed by adding (45) and (50), and subtracting off their common part 
(52), whilst outside the Mach radius the composite expansion is found from adding 
(39) and (50) and subtracting (51). 
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FIGURE 3. (a) A comparison between the (outer) asymptotic solution away from the Mach radius 
(solid line) and a full numerical integral (o), for the first harmonic of the loading noise generated 
by a 7-bladed propeller. A radial traverse is made in the plane of the propeller (8, = in), with 
M, = 0.57, M ,  = 0.2 and F = 0.08. The inner solution has not been plotted, accounting for the gap 
in the curve across the narrow Airy function trausition region. (b) A comparison between the 
asymptotic solution outside the Mach radius (solid line) and a full numerical integration (o), for 
the first harmonic of the loading noise generated by a 7-bladed propeller. The reception angle 8, 
is varied, a t  a constant sideline distance of Rosin@, = 2, with other conditions as in (a). 

An expression has therefore been constructed for the acoustic pressure generated 
by a subsonic propeller, valid for observer angle 0, close to in and from close to the 
tips right out to infinity. Outside the Mach radius, the sound pressure level is 
essentially far field in character, but inside near-field effects become strong, and a l /r-  
type decay (as in the far-field analysis of Parry & Crighton 1989) would substantially 
underpredict the pressure, particularly under take-off conditions. Very good 
agreement with exact numerical evaluation of equation (8) has been achieved (even 
for the moderate value of B = 7) ,  shown for a radial traverse in figure 3 (a), and for 
a fieldshape in figure 3 (b )  (plotting fieldshapes in fact requires inclusion of O(cos2 0,) 
terms in (39) or (45), but these can easily be found) ; the latter demonstrates that our 
small-cos 8, approximation is valid over a useful range. For convenience, the lift 
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FIQURE 4. A comparison between wind tunnel test data (solid curve) and the (outer) asymptotic 
solution (broken curve) for a radial traverse in the plane of a 7-bladed model propfan. The relevant 
parameters (typical of take-off) include M ,  = 0.2-and M, = 0.57; the quantity sound pressure level 
minus 2010gR0 has been plotted against 2010gR0, so that in the far field the plots asymptote to 
horizontal straight lines. In this case the outer solution has been interpolated across the Mach 
radius using a simple curve fitting routine. 

coefficient is supposed here to take the constant value cL = 0.25 along almost all the 
blade span, and to decay to zero parabolically between z = 0.95 and z = 1. Of course, 
the noise due to any other form of tip loading could be found equally easily, for 
suitable choice of parameters in (40). However, the values chosen for M,, M,, E and 
B correspond to a realistic (take-of€) design condition. It is again emphasized that the 
full numerical solution in the near field is very expensive in CPU time, whereas the 
asymptotic calculation is virtually trivial. Moreover, determination of higher 
harmonics numerically would prove even more difficult, whereas the asymptotic 
method can be used to generate harmonics of arbitrarily high order with ease 
(provided of course that suitable allowance is made for non-zero blade thickness, as 
in Peake & Crighton 1990), and avoiding all the problems associated with numerical 
stability and convergence. In figure 4 a comparison is made between wind tunnel test 
data (obtained on a $h-scale model propfan rig ; see Kirker 1990 for full experimental 
details) and the asymptotic solution. A radial traverse in the plane of the propeller 
is shown (now with a simple curve-fitting routine applied across the narrow inner 
region) ; it should be emphasized that, since the value of the lift coefficient a t  the tip 
was not available to  us, a one-parameter fit between the prediction and the data is 
made, but one this has been done, excellent agreement between the measured and 
predicted variations with radial separation is achieved. Further comparisons with 
experimental data are described by Boyd & Peake (1990). 

The composite solution is plotted in figure 5 ;  the rather large value of B = 75 
(accounting for the negligible sound pressure level) is required to produce a 
(virtually) smooth plot, although this value could no doubt be reduced if higher 
terms in the various asymptotic expansions were calculated. For practical prediction 
purposes, however, use of just the outer expansion (as in figure 3a) ,  with only a small 
loss of information in the vicinity of the Mach radius, is quite adequate. 
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FIGURE 5. The composite asymptotic solution for B = 75, conditions as in figure 3(a ) .  

5. Higher approximation for the supersonic propeller 
In their work on the far-field noise of a supersonic propeller, Crighton & Parry 

(1991 a, b )  proved that the leading-order noise contribution comes from the point on 
the blades at  the Mach radius, confirmed for the near field in $2 of this paper, and 
that the second term, O(mB)-i lower than the first, represents a tip effect. Their 
calculation will now be repeated in the near field, in order to improve the accuracy 
of predictions made using (24). The easiest way to do this is by consideration of the 
Bessel function expansion of I in (27) ,  rather than attempting to generalize the 
stationary phase approach. It should be emphasized that for the subsonic blade, 
knowledge of the first term is quite sufficient, since the second is O(mB)-l smaller. 

For simplicity, consider only the case cos 0, = 0 here, although the analysis could 
be generalized in much the same way as before, at  least to leading order. Using (27), 
and following Crighton & Parry (1991 b ) ,  we split the z-integral as 

where (54) 

so that the Mach radius is contained in a band of width O(mB)-i. It can then be shown 
that the leading-order term in I comes from the neighbourhood of k = 0, and from 
the second term in (53), and is equivalent to the stationary phase analysis of $3. 
Further contributions from the endpoints of the first and third z-integrals above 
arise, but those from z = z+ and z = z- cancel (cf. Crighton & Parry 1991b), so that 
the second-order contribution to P, comes from the tip. This is calculated by use of 
the asymptotic result 

% 

{exp (imB [tan y - y ]  -:in) + complex conjugate} 
1 

(2nmB tan y ) J,,(mB sec y )  - 
(55) 

with at 

P 
sec y = - (1 - k2)t ,  
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in addition to (32). The analysis follows in very much the same way as in $ 4 ;  an 
integration by parts yields the tip contribution, provided the loading does not vanish 
there, and this is followed by use of the saddle point method a t  k = 0, to yield a final 
expression for the second-order term p c z )  (O(mB)-t smaller than the first-order term), 

i ~ B ( ~ ) - ~ c o p o M , ~ M r c c L  exp (imB[Q2t + a. - tan a, - + T I )  pp N 

sazp (tan yo): (tan a,): 

} (57) 
exp (imB [tan yo -yo ] )  

(tan a. - tan yo$ 
exp (imB[yo - tan y o ] )  

(tan a0 +tan yo$ 
- 

(with c and cL evaluated a t  the tip), which can then be added onto Pg) in (24). The 
modification for vanishing tip loading is easily calculated. 

6. Conclusions 
This paper has described how asymptotic theory based on the idea of large blade 

number can be used in calculation of the near-field noise of a propeller, and represents 
a major simplification over full numerical solutions, without any significant loss in 
accuracy. Closed algebraic formulae for the pressure field have been derived, 
providing both important insights into the underlying physics and invaluable scaling 
laws for design purposes, and in good agreement with both full numerical evaluations 
and experimental data. Work is now well under way towards the completion of an 
entire prediction scheme for propeller and fan noise, relying on this kind of 
asymptotic analysis, and including all the major source mechanisms present in ultra- 
high-bypass ratio engines. 

The authors are grateful to C. J. Chapman for a number of helpful discussions. The 
data used in plotting figure 4 are the property of Rolls-Royce plc. N. Y. acknowledges 
receipt of an SERC studentship and the generous support of Rolls-Royce plc. 
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